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The standard hyperbolic methods used to solve the compressible Euler equations are 
not effective in the limit of incompressible flow. The sound waves dominate the system 
and it becomes poorly conditioned for numerical solution. For steady flow governed 
by the incompressible Euler equations, artificial compressibility is a technique that 
removes the troublesome sound waves. It leads to a hyperbolic system of equations 
that we solve by finite-volume differences centred in space, and explicit multistage 
time-stepping. The stability of this novel system is analysed, its allowable discon- 
tinui ties are described, and appropriate far-field and solid-wall boundary conditions 
are introduced. Results are presented for both two- and three-dimensional flows, 
including vorticity shed from a delta wing. Whether vorticity is produced or not 
depends very strongly on the body geometry, the accuracy of the solution method, 
and the transient discontinuities that evolve in the flow field. The results are analysed 
for the total-pressure losses in the flow fields, and for the diffusion of the vortex 
sheets. 

1. Introduction 
The ability to obtain detailed information about incompressible flow fields by the 

numerical solution of a set of governing equations affords great utility to industrial 
designers of turbomachinery, internal ducts, and pumps, as well as transport vehicles, 
be they ocean-going ships, road vehicles or airplanes. Most of these applications 
involve flows having very high Reynolds numbers, and the potential equation first 
comes to mind as the suitable flow model. Many of the flows, however, possess 
substantial regions with rotation, one very common feature being the shedding of 
vorticity from sharp edges. Working with the potential model, one faces the 
cumbersome task of setting up vortex-sheet discontinuities in the field and then 
adjusting or fitting them to the surrounding flow. This requires prior knowledge of 
where the sheets begin, and becomes very complicated for all but the simplest 
situations. The alternative, especially when the vortex topology is complex or 
unknown, is to adopt the Euler equations as the flow model because they allow 
rotational flow everywhere, and vortical regions are ‘captured’ implicitly as an 
integral part of the solution. 

The recent discovery that a vortex sheet can be generated and captured in the 
solution of a compressible flow field with separation from the leading edge of a delta 
wing at high angle of attack has stirred up a lot of activity in the development of 
numerical methods to solve the compressible Euler equations. Unfortunately these 
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methods do not work very well for an incompressible problem simply by setting the 
free-stream Mach number to a very small value, zero in the limit, because with 
decreasing Mach number the speed of the sound waves becomes much larger than 
the speed of convection. This increasing disparity in wave speeds causes the governing 
system of hyperbolic equations to be poorly conditioned, and the stability of the 
computation is greatly impaired. If, however, the interest is only in steady flow, 
artificial compressibility is one way round the difficulty, because this approach 
removes the sound waves from the system by prescribing a pseudotemporal evolution 
for the pressure which is hyperbolic and which converges to the true steady-state 
value. Our purpose here is to describe a rather general numerical method that takes 
the artificial-compressibility approach for solving the steady incompressible Euler 
equations. We show how it leads to a hyperbolic system, carry out a numerical study 
of its condition, set forth the CFL stability limit for the time integration, and examine 
the types of discontinuities that it admits. Appropriate numerical far-field and 
solid-wall boundary conditions are formulated also. 

The central issues here, as for the compressible equations, are to understand how 
vorticity is created in the flow, to calibrate the diffusion of the vorticity, and to gauge 
to what extent errors in total pressure degrade the overall accuracy of the solution. 
We try to shed light on these computed solutions in comparison with the corresponding 
potential solutions that are accepted as being accurate. The first is the simplest, 
incompressible flow past a circle, for which the computed solution is irrotational and 
compares well with the analytical Laplace solution. The second is lifting flow around 
the NACA 0012 airfoil, and we observe how the correct circulation arises during the 
transient evolution of the flow. The last is flow past a flat-plate delta wing in which 
a stable vortex sheet is shed from the leading edge and then coils up into a steady 
vortex over the wing. We analyse the qualitative as well as quantitative aspects of 
this flow in comparison with the results of a 3-dimensional panel method that fits 
the vortex sheet to the surrounding potential-flow field. 

2. Artificial-compressibility method 
In  this section the method for solving the Euler equations for incompressible flow is 

described. First a discussion of the mathematical model is presented, followed by a 
description of the computational method. 

2.1. Mathematical model 
Since the effort to develop methods to solve the compressible Euler equations has been 
intensive, there now exists a substantial assortment of computer software. This not 
only includes procedures for generating a wide variety of grids (Eriksson 1982) and 
for solving systems of first-order hyperbolic differential equations upon them (Rizzi 
& Eriksson 1984), but also others used to analyse the solution methods numerically 
(Eriksson & Rizzi 1983) and to display the computed results graphically. Practically 
all methods to solve the compressible Euler equations are based on the hyperbolic 
character of these equations. Unfortunately, if one tries to apply these methods to 
an incompressible flow in the limit of smaller and smaller Mach number, one finds that 
they do not work very satisfactorily. This is because the sound waves allowed in the 
mathematical model have a very high speed, and they dominate the system. If, 
however, only steady incompressible flow is of interest, the way around the difficulty 
is Chorin’s artificial-compressibility concept (see Chorin 1967 ; Peyret & Taylor 1983). 
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In this concept an artificial time-dependent term is added to the continuity equation 
so that the governing equations become 

av 1 _ _  ”+c2 div V = 0, -+ (Vgrad)  V+- gradp = 0, 
Po at at Po 

where c is an arbitrary real parameter and po is the constant density of the flow. This 
modified set of equations has no physical meaning until the steady state is reached. 
However, when this occurs the system becomes identical with the true steady 
equations. The still-arbitrary parameter cB can be selected to accelerate the time decay 
to steady state. 

The major advantage of the modified system over the original one is that the 
high-speed sound waves have been eliminated, rendering the modified system much 
better conditioned for numerical solution. Note that the advantage here is very 
similar to the removal of gravity waves by the geostrophic approximation in the 
equations of meteorology. Surprisingly enough, Chorin’s artificial-compressibility 
concept has attracted but a little attention, applications being primarily to the 
incompressible NavierStokes equations. The present application, it appears, is the 
fist to the strictly inviscid incompressible equations. 

Before describing an appropriate computational method, the mathematical char- 
acter of the modified set of differential equations is investigated first. 

2.2. Hyperbolicity 

In  three-dimensional Cartesian coordinates the conservation equations for the 
artificial-compressibility approach to steady incompressible flow are 

--q+e- -+-+- = 0, 
at a [Z 2 :I 

where 

PIP0 0 0 0  
9 = [  ,1. a=[: 0 1 0 0  0 1 

0 0 0 1  

and c can be chosen to accelerate the time decay to steady state. The equivalent 
quasilinear form of system (1) is 

with 
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It is called hyperbolic at the point (z, y, z ,  t ,  q )  if there exists a non-singular matrix 
T(a, /3, E )  that diagonalizes the linear combination D = aA +/3B +sC, 

where the eigenvalues h of D are real and the norms of T and T - l  are uniformly 
bounded for arbitrary real a, /3 and 6. The eigenvalues of D are found with the 
definitions U = au+/?v+sw and a2 = V+C~(U~+/~~+E~), to be A(') = = U ,  

= U-a, and are always real. Notice that the range between the 
smallest and largest eigenvalues can be adjusted according to the value of the 
parameter c. Using matrix D's complete set of linearly independent right eigenvectors 
as the columns of matrix T, we find 

= U+a,  

0 0  c2u 
--E -/3 u(U+a)+ac2 u(U-a)+ac2 
0 a v(U+a)+/3c2 v(U-a)+/3c2 
a 0 w(U+a)+sc2 w(U-a)+Ec2 

(3) 

Its  inverse is formed from the left eigenvectors of D 

wIJ+ec2 E U - ( a 2 + / 3 2 + & 2 )  w [ aa2 
- /3(WU+€C2) 

ua2 
(au + pv) U(a2 +$) c2 

aa2 a2 

- vu+pc2 
a2 

/3U- (a2 + p" + s2) v 
aa2 

U-a 
2a2c2 

-- 

(au+ew) U+(a2+s2)c2 
aa2 

p 

p 
2a2 

2a2 

€( v u+ /3c2) - 
aa2 

a 
2a2 
- E 

2a2 

8 a 
2a2 
- 

2a2 

Working with the maximum norm, one can then go on to  complete the demonstration 
of hyperbolicity by making reasonable estimates to show that these last two matrices 
are uniformly bounded if I u 1 , I v I , and I w I are bounded. 

The equations that we actually solve, however, are not the Cartesian set (1) but 
the general finite-volume form (Etizzi & Eriksson 1984) 

where H.n = [V*n ,uV.n+(p /p , )n . e , ,  ~ U V . n + ( p / p , ) n . e , , w ~ n + ( p / p , ) n ' e , ]  is the 
vector flux of q across the surrounding grid of quadrilateral cells with volume 
VOL and rector areas S, = SIXe, + SI Ye,, + SIZe,, S, = SJXe, + SJYe, + SJZe, 
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and S, = SKXe,+SKYe,+SKZe,. We can analyse (5) locally, after semidiscreti- 
zation using centred space differences, by holding the metrics of the cell ijk constant 
to obtain 

where 
C2SIX C2SI Y C2SIZ 

SIY  VSIX U+vSIY 
SIZ WSIX 

U + ~ S I X   us^^ 

WSIY U+wSIZ 

A = 8. 
a 9  

c2SJX c2SJ Y c2SJZ 

SJY vSJX V+vSJY vSJZ ’ 
SJZ wSJX wSJY U+wSJZ usJz I V+uSJX uSJY 

c2SKX c2SK Y c2SKZ 

B = e -  
a9 

S K Y  vSKX W i - v S K Y  vSKZ ’ 
SKZ wSKX wSKY W+wSKZ usKz I W + ~ S K X  U S K Y  

a9 
c=  8’ 

with 

and 
U =  uSIX+VSIY+WSIZ,  V = uSJX+VSJY+WSJZ, 

W = uSKX + vSK Y + wSKZ. 

Since the three matrices A, & and C in (6) are linear combinations of A, B and C, 
(6) also is hyperbolic, and its eigenvalues and diagonalizing matrices follow from (3) 
and (4) by absorbing the metrics into a, /3 and 8. 

2.3. Value for parameter c 

Although the finite-volume transformation does not destroy the hyperbolicity of the 
problem, specifying an inappropriate value for the parameter c may degrade its 
condition if the different wave speeds in the system become too disparate. In order 
to guide us in choosing a value for c, we need to look at a measure more quantitative 
than just the boundedness of the transformation matrices. In fact what we want to 
know is how the bound varies with c. This can be determined numerically for given 
values of V and c by computing the eigenvalues cr of T*T since the L, norms are 
(1 T I( = (crmax)i and 11 T- l  11 = (crmin)*. It is less cumbersome, but sufficient for 
insight, to consider only the two-dimensional problem, i.e. w = 8 = 0. For any 
specified values of Vand c a good measure of the condition of the system is the number 
K = 11 T 11 11 T - l  )I = (umax/umin)k One can surmise, and we have verified it in an 
actual computation, that this condition number K depends only on the ratio c2/ V. V. 
Computed numerically and plotted in figure 1 as the radial coordinate of the polar 
diagram (K, 8)’ where the wave angle 6 defmes a = sin t9 and /3 = cos 6 for 0 < t9 < 2x ,  
the condition number K is displayed for three different values of c2/ V. V. When the 
ratio r = c 2 / P  V is greater than unity the pressure waves dominate over the 
convection waves and the system is less directionally dependent and better con- 
ditioned. This analysis applies to the constant-coefficient-matrix problem (6), but for 
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FIGURE 1. Polar diagram of condition number K = (1 T ) I L I  11 T-’ I I L r  of the hyperbolic system ( 1 )  
aa a function of the plane wave angle B for three values of the ratio r = cz/(uz + v2)  = 0.2, 1 and 
5. Poorly conditioned when r < 1 .  

actually solving the flow field the parameter c need not be a global constant. In  the 
spirit of local-timestep scaling (Rizzi & Eriksson 1984) we set it proportional to the 
local velocity squared, c2 = max(0.3, r V .  V )  where, based on this study, T is a 
constant in the range 1 < r < 5. 

2.4. CFL condition 

In order to solve the hyperbolic system (5 ) ,  assuming that under appropriate 
boundary conditions it does converge to a steady state, we straightforwardly apply 
the time-marching finite-volume procedure developed originally for the compressible 
Euler equations which uses an explicit three-stage Runge-Kutta-type time-integration 
scheme (see Rizzi & Eriksson 1984). In  the absence of boundaries the usual linearized 
Fourier analysis of (6) specifies the limit on the timestep for which the integration 
locally is stable, i.e. the CFL condition is At < CFL/ I A I max where the constant CFL 
depends on the particular multistage method that is used. A conservative estimate 
for the maximum eigenvalue I A lmax of the 3-dimensional spatial-difference operator 
leads to the local-timestep condition 

1 cFL [ u+ (@ + C 2 p ) t  i*k’ 

VOL 
(7) 
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where 8= ~ u s I x + v s I Y + w s I z ~  

+ I US JX + vSJ Y + wSJZ I 
+ I uSKX+ vSK Y + wSKZl , 

S2 = (ISIXI+ISJXI+ISKXI)2 

+( ISIYI+ISJYI+ISKYI)2 

+ ( I SIZ I + I SJZI + I SKZl )2. 

The computed results we present here have all been carried out using this step size 
in the local-timestep integration scheme. 

2.5. Discontinuities 
In  steady flow the true incompressible equations admit of course only the tangential 
discontinuity with jump conditions [PI = 0 and 5 . n  = b . n  = 0. The artificial- 
compressibility method, however, approaches steady flow only asymptotically in 
time, so we must investigate what transient discontinuities are allowed in this 
pseudo-system of equations. This aspect of the method has been overlooked, it seems, 
by Chorin (1967) and Peyret 6 Taylor (1983). We follow the standard analysis of 
discontinuities for conservation laws, and shrink the integration region in ( 5 )  around 
the discontinuity surface to obtain, in the limit, 

where s is the speed of the discontinuity in the direction of its normal n, the tangential 
direction t is parallel to the surface, the asterisk indicates the average of the values 
on each side of the discontinuity, e.g. V z  = +(Val + V,,,), and the square brackets their 
difference, [V,] = Vn2- V,,,. System (8) is linear and homogeneous for given s and 
average velocities, 

and a non-trivial solution exists if 

(8- VZ) (82-2sV;-c2) = 0. 

The discontinuity therefore may move with any of three different speeds, s1 = V z ,  
s2 = V z  + ( VE2 + c2)i, or s3 = V,* - ( Vzz  + c2)t.  The jump relations for the first speed then 
are eigenvectors of (8), which work out to be 

and K is an arbitrary constant. We immediately recognize this solution as the 
unsteady tangential discontinuity that corresponds directly to the steady one. The 
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second and third eigenvectors associated with the speeds s = s2 and s = s3 
respectively, 

C2 

(11) 

are more unexpected, since they allow jumps in both pressure and velocity across 
a discontinuity. With s = s2 the shock travels downstream, and the pressure and 
normal velocity of a fluid particle passing through it rises or falls together depending 
on the sign of K .  With s = s3 thc shock moves upstream and the jumps in pressure 
and normal velocity take opposite signs. One of these solutions may be spurious in 
the sense that i t  violates some sort of entropy condition that a real flow should fulfil 
if i t  were just slightly compressible, but we shall not pursue this matter further here. 
Of the two the second seems more physical, and specifies vanishing jumps in the limit 
as c2 goes to zero. In  any case, we presume that a fluid particle travelling through 
either one undergoes an irreversible process that produces a rise (or fall) in its entropy 
function and a corresponding loss (or gain) in its total pressure. But such a 
discontinuity is not allowed to  remain a part of any steady flow field. 

2.6. Boundary conditions 
Boundary conditions of course specify the particular problem, and two different types 
are of concern here: flow conditions on a solid wall and at the far-field boundary of 
the mesh. Since our mesh is aligned to the wall, for the first type we set the velocity 
flux through the wall to zero and determine the pressure p on it from the normal 
component of the incompressible momentum equation V. ( Vgrad) n = n*gradp/p,, 
which is exactly analogous to the conditions used for compressible flow (Rizzi 1978). 
When i t  is differenced to formally first-order accuracy, the pressure on the surface 
is deduced from the interior values. 

The far-field conditions are specified as a form of Engquist's hierarchical series of 
absorbing boundary conditions (see Engquist & Majda 1978). The First Approximation 
of this theory reads that setting conditions on the characteristic variables, instead 
of the flow variables Q, of the component of (6) normal to the boundary, is maximally 
dissipative and therefore absorbs more energy. Selecting a, b a n d  6 as the components 
of the unit vector normal to  bhe boundary means that the eigenvalues A of D are the 
slopes in time of the characteristic surfaces in the direction normal to  the boundary. 
The transformation matrices T and T diagonalize this one-dimensional equation 
so that 

The combination of boundary conditions determined from outside the domain and 
auxiliary conditions set from inside follows in the now-standard way according to 
whether the associated characteristic directions enter or leave the domain. When 
U < 0 we set the three (corresponding to negative eigenvalues) ingoing characteristic 
variables qP), @ 2 ) ,  and $(O) to their free-stream values, linearly extrapolate the third 
q5(3) from the computational field, and then solve for the original unknowns Q = T+. 
At outflow i t  is qS4) that is given the values of undisturbed flow, and @), #2) and 
g5(3) are extrapolated. 
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2.7. Arti$cial-viscosity model 
The rationale for introducing an artificial-viscosity operator into the numerical 
procedure has been put forward before (Eriksson & Rizzi 1984). Among the reasons 
to consider such a model are the need to counteract nonlinear aliasing associated with 
centred differences, to control the cascading of energy from large scale to small scale, 
and perhaps even to ensure the existence of a steady state. The dissipative operator 
09 that we add to the convective differencing of the incompressible Euler equations 
contains a linear fourth-difference term for each of the three spatial directions (see 
Rizzi & Eriksson 1984). They are implemented with boundary conditions so that the 
complete operator has the negative semi-definite property (qTD9) < 0, which has 
been found important for minimizing the occurrence of spurious errors at solid 
boundaries (see Eriksson 1984). 

3. Computed results 
Irrotational incompressible flow is governed by the Laplace equation, a linear 

equation. Laplace solutions also satisfy the nonlinear incompressible Euler equations, 
since then the term V x  curl Vis zero, but other, nonlinear roots are admissible also. 
Why or in what way during the course of the numerical solution of this nonlinear 
system does the computational method arrive at either the Laplace solution or the 
rotational one we cannot answer conclusively right now. Certainly the boundary 
conditions, the initial conditions (whether they contain discontinuities or not), the 
geometry of obstacles to the flow, flow-field singularities, and the overall accuracy 
of the numerical method all have a central bearing on the question. In  addition to 
demonstrating the overall soundness of the numerical method and outlining interesting 
flow features of a three-dimensional flow field, what we attempt to do with the 
computed results presented here is to show examples of both irrotational and 
rotational solutions and offer some plausible explanations why each was obtained. 

3.1. 2-dimensional irrotational solution 
Our first example is inviscid incompressible flow past a circle, for which the analytical 
solution is known. Its comparison in figure 2 with the C, pressure distribution 
computed by this method on the upper half-circle shows that indeed we do obtain 
the irrotational solution. The Cp distribution and the vector diagram of velocity 
directions (figure 3) indicate the fore-and-aft symmetry of the overall flow field and 
the loss-free character of the solution. However, if the numerical integration errors 
were larger than they actually are in this case, a loss in total pressure would occur, 
and the flow would stagnate and then separate before reaching the point most 
downstream on the circle. A recirculation region would subsequently develop in order 
to satisfy continuity, and rotational flow would result. In other words, a certain level 
of numerical accuracy is needed in order to obtain the irrotational solution; or, to 
put it another way, the amount of numerical viscosity must be kept to a minimum. 

3.2. 2-dimensional solution with circulation 
The next example is also two-dimensional, but the entire plane is included now and 
the geometry is the NACA 0012 airfoil at 5' incidence. Measured by the decay of the 
average and maximum time difference of pressure in the entire field and the evolution 
of lift and drag, the convergence of the solution computed upon a mesh with 128 cells 
around the airfoil and 28 outward is given in figure 4. Although the comparison of 

10 P L Y  153 
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- 3  
CP 

- 2  

- 1  

0 

+ I  

- Exact 
0 Euler solution 

X 

b 

FIGURE 2. Comparison of the exact solution to the Laplace equation and the numerical solution 
to the Euler equations for incompressible flow around a circle. 

FIGURE 3. Vector plot of the velocity field of the computed 
Euler-equation solution to flow around the circle. 
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0 200 400 600 800 lo00 
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FIGURE 4. Convergence of the solution of incompressible flow past the NACA 0012 airfoil indicated 
by the decay of the average time difference of pressure and the evolution of lift and drag. M ,  = 0, 
a = 5”. 

computed C ,  on the airfoil with that of an accurate boundary-integral (‘singularity’, 
or so-called ‘panel’) method (Eriksson 1975) is generally good (figure 5 ) ,  there are 
small discrepancies at the leading-edge suction peak and larger ones at the trailing 
edge, the latter due undoubtedly in part to the mesh being unable to resolve the 
flow singularity completely there. Bu t  perhaps the best gauge of accuracy is the 
degree to which the Bernoulli relation along a streamline in steady flow, 
p/p,++Vz = pt(constant), is satisfied. In this flow all streamlines originate from a 
constant free stream, so the total pressure p, takes the same value on every stream- 
line. The total-pressure coefficient (pt-pw)/(ptW -pm) in figure 6 confirms that 
there are errors in the vicinity of the leading and trailing edges, but they are small 
in magnitude and confined locally to these two regions. This loss, however, should 
not be interpreted as a physical quantity that is transported along streamlines, but 
rather as an error perturbation upon the solution where the flow gradients are 

10-2 
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1 

CP 

0 -  

- 

0 0 Singularity method 
-A-L Eulcr solution 

Isobars Increment = 0.1 

.- 

- 0 

FIGURE 5. The pressure field of the computed Euler-equation solution. The surface distribution is 
compared with the highly accurate results from a potential singularity method. NACA 0012 airfoil, 
M ,  = 0, u = 5”. 

especially large, which may be a possible source for the injection of vorticity. In 
regions where the flow gradients are not severe, an accurate value for the Bernoulli 
constant is produced. We conclude that an almost-irrotational solution is obtained 
with very nearly the correct circulation (as given by the panel method). Furthermore, 
the contours of constant flow angle (figure 7) demonstrate that  even without our 
invoking a Kutta condition the flow leaves the trailing edge smoothly, which is an 
essential feature of potential flow showing a realistic amount of lift. The central 
question before us is therefore ‘how does the Euler-equation method arrive a t  the 
correct circulatory flow T ’ (i.e. flow separation a t  the trailing edge without applying 
a Kutta condition). Although no definitive answer is yet at hand, some clues suggest 
that  transient phenomena during the flow fields’ evolution to steady state may be the 
significant agent. Figure 8 gives the values of lift C ,  and circulation r = j Vdl 
around a circuit close to  the airfoil obtained in the solution on each of its first 25 
timesteps after starting from initial conditions of free-stream flow that do not satisfy 
the boundary conditions on the airfoil. We see that a non-zero value for lift is reached 
even after the first iteration. The circulation, however, tends to lag behind the lift, 
and in fact is even negative, suggesting, perhaps, the passage of vorticity opposite 
in sign to  that bound in the airfoil. This observation follows the qualitative trend 
of the so-called Wagner effect (Wagner 1925). But the reader is cautioned against 
looking for quantitative realism in the transient field, because of the method’s 
underlying assumption of artificial compressibility and its low order of accuracy for 
the time integration. At best, the broad features of the transient numerical solution 
may bear some similarity to the real physical processes. When we look in figure 9 
at the contour maps of pressure and vorticity i2 = e;curl V of these solutions, we 
see a sharp pressure gradient moving out from the nose of the airfoil and another 
in the shadow of the trailing edge leaving behind them a high-pressure region of 
rotational flow. The vorticity distribution on the airfoil surface has peaks a t  the 
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Flow angle 

\ 

Increment = 5' I 

FIGURE 7. Contours of constant flow angle in the computed solution demonstrate that the flow 
leaves the trailing edge smoothly. NACA 0012, M, = 0,  a = 5'. 

leading and trailing edges, which achieve a maximum on the fifth iteration but then 
decay to the small residual level in the converged state by being swept out of the 
flow field. Presumably the vorticity created in the field is counterbalanced by a vortex 
bound in the airfoil which accounts for the circulation. But what causes the vorticity 
to appear in the first place '1 It is present in neither the freestream nor the initial 
conditions, and therefore seems to violate Kelvin's theorem. One possible explanation 
is that the large pressure waves ahead of the leading edge form the numerical 
approximation of one of the unsteady pseudoshock waves allowed in the artificial- 
compressibility method, and is the source of the vorticity. This source may be in part 
physical, the pseudoshock, and in part numerical, the viscosity of the discretization 
error. Substantial transient shear exists at  the trailing edge and is swept downstream. 
It may well be the numerically smeared representation of an unsteady tangential 
discontinuity. We therefore hypothesize that the genesis of the circulation lies in 
irreversible processes, either in the mathematics itself or its numerical approximation, 
that occur across the transient pressure waves of the artificial-compressibility 
method. Once generated, the part that this vorticity plays, no matter how unphysical 
i t  may be, is to usher the iterative solution toward the rotational root of the 
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FIQURE 8. Evolution of lift and circulation during the first 25 iterations after an impulsive 
start from free-stream initial conditions. NACA 0012, M, = 0, a = 5’. 

incompressible Euler equations. The trailing edge is evidently the controlling factor, 
namely the severe gradients subside only when the flow leaves the trailing edge 
smoothly. 

3.3. 3-dimensional rotational solution 
This subsection presents the computed solution of incompressible flow around a 70’ 
swept delta wing of zero thickness and unit length at 20° angle of attack. The steady 
flow separates from the leading edge in a vortex sheet, which then, under the influence 
of its own vorticity, rolls up to form a vortex over the wing. Owing to the lack of 
experimentally measured turbulent-flow data for this case, a comparison with 
measurements is not carried out. But we do compare our results with those from 
Hoeijmakers’s potential boundary-integral’ (panel) method, which inserts a vortex 
sheet, adjusts it to the surrounding irrotational flow field, and allows it to roll up 
under its own influence for several turns, and then models the remaining core by an 
isolated line vortex (see Hoeijmakers, Vaatstra & Verhaagen 1983; Hoeijmakers & 
Rizzi 1984). The position and strength of the vortex sheet and isolated vortex are 
determined as part of the solution, sometimes termed ‘fitting’ the rotational-flow 
features. They are true discontinuities, infinitesimally thin, and for this reason a very 
good choice for comparison because the sheet and vortex in our solution are not 
infinitesimally thin but smeared or ‘captured’ over a number of computational mesh 
cells. The comparison therefore offers a good control on the position of our computed 
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vortex and the diffusion of the sheet. Furthermore such panel-method results have 
been found to agree reasonably well with measurements made in turbulent flow (see 
Hoeijmakers et al. 1983). 

The thickness of the rotational flow features captured in the solution to the Euler 
equations vanes directly with the size of the mesh cells. The simplest way, therefore, 
to minimize the diffusion of vorticity is to use as dense a mesh as possible. Ours is 
an 0 type constructed by Eriksson’s (1982) interpolation method that places a polar 
singular line at the apex and a parabolic singular line at the tip of the trailing edge 
and has 80 cells around the half-span, 40 each on the upper and lower chord, and 
24 outwards, for a total of 76800 cells (figure 10). This particular grid topology focuses 
cells along the leading and trailing edges, as well as the apex where the flow changes 
most rapidly. It requires, however, a slight rounding of the wingtip. Figure 11 
presents a summary of the time evolution of the solution given by the root-mean- 
square and maximum residuals of the time difference of p, and by the lift and drag 
coefficients. After 800 timesteps taking 400 CP seconds, a steady state was reached, 
as judged by the decay of the residuals by several orders of magnitude. The 
computation was carried out on the CYBER 205 vector computer in 32-bit precision 
at the rate of 6 ps per cell per iteration, which translates to over 125 mflops. 

Global features of the flow are surveyed in figure 12 by isograms, drawn in plane 
projection, of the computed solution in three non-planar mesh surfaces, x / c  = 0.3, 
0.6 and 0.9, over the wing, one surface in the wake at z/c = 1.15 and one cutting 
axially through the core of the vortex. The isograms of C,, vorticity magnitude IS 1 , 
and total-pressure coefficient (pt-p,)/(pt, - p a )  in figures 12 (a-c) reveal qualita- 
tively the leading-edge vortex over the wing, as well as the trailing-edge vortex 
that develops from the trailing-edge sheet, interacts, and counter-rotates with the 
leading-edge vortex, and produces the double-vortex pattern in the wake. This wake 
phenomenon has been observed in a wind tunnel (Hummell979). The axial velocity 
component u/ V ,  is discontinuous across the sheet, and the contours in figure 12 (d) 
clearly reveal this feature and also show that the velocity in the core is about 1.5 
times the free-stream value. Contours of the circumferential velocity component 
(v2 + w2)i/ V, indicate the large gradients in this quantity across the core of the vortex. 
The isograms viewed axially through the core indicate the approximately conical 
nature of the flow starting at the apex. At about the 80 % chord position, however, 
the lertding-edge vortex lifts up slightly, and an abrupt change takes place which 
might be interpreted as an additional, and unexpected, vortex phenomenon. Although 
the cause of this feature may be numerical, it is known that the shear layer separating 
from the leading edge does show small-scale wave-like structure near the trailing edge 
(Hoeijmakers & Vaatstra 1983), which could perhaps evolve into a second vortex that 
wraps up and intertwines with the primary vortex (Hoeijmakers, private commun- 
ication). It may also be a precursory effect of the development of the trailing-edge 
vortex. If the conjecture of such a flow process is correct, then our rounding of the 
tip just exacerbates it. The contours of total pressure (figure 12c) display qualitative 
agreement with those observed in wind-tunnel measurements. The computed losses 
in the core, however, are high, nearly 80 yo of the total pressure, and can be attributed 
to the numerical effect of capturing the vortex sheet. Theoretically the loss should 
be zero (total pressure coefficient = 1) on each side of the sheet, but the velocity is 
in shear. The numerical solution has to support this shear with a continuous profile 
over several mesh cells through the sheet, and any sort of reasonable profile (say a 
linear one) connecting the velocity vector on one side with the one on the other side 
immediately implies a total-pressure loss for the profile even if the velocities at both 
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Detail at leading edge 

c 

FIGURE 10. (a) Main features of an 0-0 grid generated around a delta-shaped small-aspect-ratio 
wing. The polar singular line produces a dense and nearly conical distribution of points at the apex, 
which is needed to resolve the rapidly varying flow there. (a) Three-dimensional view of the delta-wing 
mesh. (c) Partial chordwise and spanwise views of the actual 8 0 x 2 4 ~ 4 0  mesh used for the 
computation of the 70' swept flat plate. 
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FIGURE 11.  Convergence of the 3-dimensional Euler-equation solution for flow separating from the 
leading edge of a swept flat-plate delta wing indicated by the residual decay and evolution of lift 
and drag. M = 0, a = 20'. CYBER 205 vector computer. 

sides are correct. And the level of loss quickly mounts as the number of cells available 
to support the profile diminishes. As the vortex sheet wraps up tighter and tighter 
there will be only one or two cells located between the coils, and ultimately it will 
disappear off the mesh completely. At  that point it is not unreasonable to expect the 
amount of loss of total pressure that we see in figure 12 (c). A finer mesh could support 
more coils, but the sheet must eventually disappear in the same way off this mesh 
too, producing about the same loss at the centre of a now smaller-diameter core. It 
is the size of the contour rings, but not their level, that varies with mesh spacing. 

Let us now inspect the solution more quantitatively by comparison with the results 
of the potential method. Figure 13 presents the shape of the fitted vortex sheet 
(dashed lines) from the potential method superimposed upon the vorticity magnitude 
contours of the Euler-equation solution in three cross-flow planes. We should bear 
in mind that the dashed lines are in the planes z/c = constant, while the full lines 
are projections onto these planes of the vorticity contours in the non-planar mesh 
surfaces that intersect the wing at the corresponding value of x/c. We see that the 
vorticity captured in the field is diffused over 5 or 6 cells and that, in general, the 
vortical Aow region occupies a larger volume than that enclosed by the vortex sheet 
fitted to the potential solution. But the positions of the vortex cores in the two results 
and even the curvature of the sheets agree remarkably well, except at the first station 
x/c = 0.3, where the vorticity contours are somewhat larger and more inboard of the 
fitted vortex sheet. The vorticity in the fitted sheet is largest near the leading edge, 
where the curvature of the sheet is greatest, perhaps even singular, and the 
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FIGURE 12(b). For description see p. 305. 
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FIQURE 12. The vortex flow field is surveyed by contour maps of the computed Euler-equation 
solution for flow past a 70' swept flat-plate delta wing. They are drawn in four non-planar mesh 
surfaces at the x / c  = 0.3, 0.6, 0.9 and 1.16 stations and in one mesh surface which passes 
approximately through the axial core of the vortex. Y, = 0, a = 20". (a) Isobars of pressure 
coefficient C,. (b) Vorticity magnitude contours I f4 I increment = 0.02. (c) Contours of total-pressure 
coefficient (pt -pm)/(ptm -p,), increment = 0.4. (d) Axial-velocity u/ V ,  contours, increment = 0.1. 
(e) Circumferential-velocity (VS +to*)'/ V ,  contours, increment = 0.1. 
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FIGURE 13. Comparison of the vorticity field indicated by vorticity-magnitude contours (solid lines) 
computed with the Euler equations and the shed vortex (dashed lines) that is fitted as a 
discontinuity to the surrounding potential solution obtained by the 3-dimensional panel method. 
It shows good agreement on the vortex position. 

Euler-equation solution indicates the same trend (see the enlargement of the 
leading-edge region in figure 13). The sheet appears to depart tangentially from the 
lower surface of the leading edge. This comparison is the first quantitative 
demonstration so far that a vortex sheet separating from a swept leading edge can 
be captured in the vorticity field of the Euler-equation solution with a reasonable 
degree of realism. The curious distortion of the contours in the x / c  = 0.9 station and 
the associated second island of vorticity is another indication of the additional vortex 
emanating from the sheet as discussed above. 
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An informative, and usually qualitative, manner to examine a flow over a wing 
is to look at its isograms on the wing surface. In  figure 14 (a-d) we present such views 
together with the more quantitative graphs of spanwise distributions at three 
x / c  = constant stations and compare them with the potential values available to us. 
In both sets of computed isobars (figure 14a) the pressure trough under the 
leading-edge vortex has about the same shape, position and width, and the two agree 
rather well except for minor differences appearing along the plane of symmetry and 
at  the tip due to the difference in the local geometry there. The peak level of the 
suction along the entire trough on the upper surface is somewhat lower in the Euler 
results, and shifted slightly inboard at x / c  = 0.3, following the trend we saw in 
figure 13. The enlargement of the apex region, however, demonstrates that the Euler 
solution is not conical just downstream of the apex. The potential flow is mildly 
singular at this point, but it seems that the large gradients occurring there cannot 
be fully resolved in the Euler solution. This follows from the property of the 
finite-volume scheme that at a mesh singularity like the apex or leading edge i t  loses 
accuracy (but not stability). We observe that the vortex flow in this solution needs 
about 3.5 % chord lengths, corresponding to 5 or 6 cells in the stream direction, to 
build up the suction peak and attain its minimum C, contour of -3.2. The contours 
of total-pressure coefficient in figure 14 (b)  confirm thin explanation. The largest losses, 
even negative values, are found near the apex. At x / c  = 0.002 both upper and lower 
surface suffer heavy losses, by x / c  = 0.035 the lower surface has recovered but the 
upper surface shows a mix of both loss and gain, which swings entirely to gain further 
downstream, the largest being at x / c  = 0.3. This probably accounts for the inboard 
shift of the vortex at x /c  = 0.3. Figure 14(b) therefore serves as a calibration of 
computed errors in total pressure, i.e., even with this level of error locally, a 
reasonably accurate flow field is obtained overall, by comparison with the potential 
results. We have found, however, that, the more we restrict the region where the 
largest losses occur to the immediate neighbourhood of the apex by condensing the 
mesh cells there, the better the solution is on the remainder of the wing. 

The axial, u/ V,, and circumferential, (v2 + w2);/ V,, velocity components on the 
upper surface are displayed in figure 14 (c, d). The potential flow attaches to the wing 
at the plane of symmetry and moves in the outboard direction along the entire upper 
surface. In  the Euler solution the attachment point on the aft part of the wing is not 
in the plane of symmetry but at a position between 15 and 25 % semispan. Outboard 
of this location the flow is toward the leading edge and, inboard of it, toward the 
plane of symmetry. 

4. Concluding remarks 
The artificial-compressibility method is an interesting one for solving the incom- 

pressible Euler equations because it is equally applicable in two- or three-dimensional 
problems and because its solutions provide a lot of insight into the types of flows that 
can occur. A free parameter can be chosen to alter the wave-propagation speeds, and 
unexpected transient discontinuities have been described which may play a role in 
the vorticity-creation mechanism. In a 2-dimensional flow field vorticity was 
observed to evolve in time, culminating in a steady flow with circulation. A steady 
3-dimensional flow field with a free-shear layer has also been computed and its 
features have been discussed. Comparison with an accepted solution was reasonable ; 
even large (but local) errors in total pressure do not seriously degrade the global 
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FIQURE 14. Isograms of the computed Euler-equation solution on the upper surface of the wing 
together with three corresponding graphs versus local semispan at  x / c  = 0.3.0.6 and 0.9.70' swept 
flat-plate delta wing. a = 20'. (a) Isobars of pressure coefficient C, compared with the potential 
solution, increment = 0.2. (a) Contours of total-pressure coefficient (pt-p,)/(pt, -p,), 
increment = 0.4. (c) Axial-velocity u/ V ,  contours and spanwise graphs compared with the 
potential solution, increment = 0.1. (d) Circumferential velocity (v* + w')i/ V, contours and spanwise 
graphs compared with the potential solution. 
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accuracy, and a curious vortex-like phenomenon was seen to develop just ahead of 
the trailing edge. This feature may arise from a disturbance of the leading-edge sheet 
or it may be associated with the roll-up of the trailing-edge sheet. A more definite 
explanation must await further investigation. 

We wish to thank Harry Hoeijmakers at NLR for many helpful discussions and 
insight and Control Data Corporation for providing us with computer time for the 
further development of this method. 
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